Exam Symmetry in Physics

Date	January 27, 2010
Room	X 5118156
Time	9:00 - 12:00
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- You are not allowed to use the lecture notes, nor other notes or books
- All subquestions (a, b, etc) of the three exercises have equal weight
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Exercise 1

Consider the cyclic group C_4 : gp{c} with $c^4 = e$.

- (a) Determine the order of the elements of C_4 .
- (b) Write down all proper invariant subgroups of C_4 .
- (c) To which group is the factor group C_4/C_2 isomorphic?
- (d) Construct the character table of C_4 .

(e) Construct the three-dimensional vector representation D^V of C_4 and demonstrate whether it is an irrep or not.

(f) Decompose D^V into irreps of C_4 and use the result to conclude whether a crystal with C_4 symmetry can support a permanent electric dipole moment.

(g) Determine the Clebsch-Gordan series of the direct product representation $D^V \otimes D^V$ of C_4 .

Exercise 2

Consider the group of rotations in two dimensions SO(2) and the group of unitary 1×1 matrices U(1).

(a) Show that $SO(2) \cong U(1)$.

(b) Give a two-dimensional parametrization of the elements in the Lie algebra of SO(2) and show that upon exponentiation it yields the defining representation of SO(2).

(c) Write down all (complex) irreducible representations of SO(2).

(d) Give an example of a physical system with an SO(2) or U(1) symmetry.

Next consider the extension of SO(2) to include reflections: the group O(2) of orthogonal 2×2 matrices.

(e) Write down the two-dimensional representation of O(2) obtained by its action on the vector

$$\left(\begin{array}{c} x+iy\\ x-iy \end{array}\right)$$

(f) Is this two-dimensional rep of O(2) an irrep?

Exercise 3

Consider the group SU(2) of unitary 2×2 matrices with determinant 1.

(a) Give an explicit representation of its generators J_i .

(b) What are the structure constants of SU(2)?

(c) What is the Casimir operator of SU(2) and is it an element of the Lie algebra?

(d) Explain why the eigenvalues of the Casimir operator determine the irreps of SU(2).

(e) Give an example of an application of the group SU(2) in physics.